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ABSTRACT

Image preprocessing is useful in helping to identify “spectral response patterns” for certain types of image classifi-
cation problems. The common artifacts in remotely sensed images are caused by the blurring due to the optics of
the image gathering device, illumination variations, and the radiative transfer of the atmosphere. The Multi-Scale
Retinex (MSR) image enhancement algorithm that provides dynamic range compression, reduced dependence on
lighting conditions, and improved (perceived) spatial resolution has proven to be an effective tool in the correc-
tion of image degradations such as those in remote sensing images. In this paper, we measure the improvement
in classification accuracy due to the application of the MSR algorithm. We use simulated images generated with
different scene irradiance and with known ground truth data. The simulation results show that, despite the degree
of image degradation due to changes in atmospheric irradiance, classification error can be substantially reduced by
preprocessing the image data with the MSR. Furthermore we show that, similar to the results achieved in previous
work, the classification results obtained from the MSR preprocessed images for various scene irradiance are more
similar to each other than are the classification results for the original unprocessed images. This is evident in the
observed visual quality of the MSR enhanced images even before classification is performed, and in the difference
images obtained by comparing image data under different irradiance conditions. We conclude that the application
of the MSR algorithm results in improved visual quality and increased spatial variation of multispectral images that
is also optimal for certain types of multispectral image classification.
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1. INTRODUCTION

Various algorithms for image classification using remotely sensed imagery exist in the literature. One way to charac-
terize these algorithms is by the characteristics of the multi-dimensional space in which they operate. For example,
many users of remotely sensed imagery utilize spectral signatures to characterize and identify materials in multi-
dimensional “spectral” space. The spectral signature of a material may be defined in the solar-reflective region of the
electromagnetic spectrum by its reflectance as a function of wavelength, measured at an appropriate spectral reso-
lution. In other spectral regions, signatures of interest are temperature and emissivity (TIR) and surface roughness
(radar). The motivation for using remote sensed data for material identification is that different types of materials
exhibit different spectral signatures,! and so can be distinguished on this basis.

There are fundamental problems with the spectral signature approach that are well documented in the literature.
One fundamental problem is that all spectral signatures are unique to the sample and to the environment in which
they are obtained. Further, the ability to distinguish spectral signatures is often complicated by the natural variability
of a material, the spectral quantization of many remote-sensing instruments, and the modulation of the signatures
by the atmosphere in the image formation process.! Therefore, there is no guarantee that the spectral signatures
obtained by the remote sensing system will either be similar to the ones obtained under a different environment, or
exhibit measurably different, or even recognizable characteristics.

In recent years, considerable quantities of ground-based (laboratory) data have been accumulated that describe
spectral reflectance characteristics of several types of soils and vegetation. However, it is virtually impossible to
duplicate natural reflectance variations under laboratory conditions. In addition, the spectral signature of vegetation
changes over the seasonal life cycle of plants. Thus the comparison between natural reflectance signatures and
laboratory produced signatures becomes even more complicated.
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Figure 1. System Model.

As an alternative to classification based on spectral signatures, the multi-dimensional spectral space can be
transformed into an application dependent “feature” space that may prove more useful for classification purposes.
For example, transformations such as multi-spectral ratios have been used to enhance reflectance differences between
types of soil and vegetation, and are used to form “vegetation indices” that aid in classification. Typically, soil and
other geological formations exhibit ratios near 1, while vegetation shows a ratio of 4 or more. Other transformations
such as scale space filtering have been applied to identify “fingerprints” of certain types of minerals using local points
of inflection to characterize absorption characteristics. The success of using these indices has been greatly affected
by the lack of suitable methods to account for atmospheric effects on the radiance measured by the remote sensing
device.?

Figure 1 illustrates the major steps that relate the image acquisition to the image classification process. Regardless
of which feature classification method is to be used, the (raw) image data needs to be radiometrically calibrated before
it can be used for analysis. That is, the raw data must be converted from sensor DN values to surface reflectance
values. Radiometric calibration generally involves several steps: sensor calibration—calculation of gain and offset
coefficients that convert sensor DN values to at-sensor radiance values; atmospheric correction—converion of at-
sensor radiance values to surface radiance using atmospheric modeling and estimation correction techniques; and,
solar and topographic correction—conversion of surface radiance to surface reflectance by correcting for topographic
slope and aspect, solar spectral irradiance, solar path transmittance, and down-scattered “skylight” radiance.! In
addition, detailed information about atmospheric conditions at the time of data acquisition may be required but is
generally not available. Parametric atmospheric correction methods can also be used to compensate for atmospheric
conditions, but they also require some information about the atmospheric conditions at the time of data acquisition.
The success of multi-image classification in the analysis stage is, thus, dependent on the quality of these calibration
and correction methods.

In this paper, we approach multi-image classification differently. Instead of applying (parametric) atmospheric
correction methods to remote sensed imagery, we compensate for the atmospheric effects by applying the multi-scale
retinex (MSR) image enhancement algorithm to the multispectral data prior to classification. The dynamic range
compression and color constancy properties of the MSR aid in minimizing the effects of variations in illumination
conditions, and the sharpening compensates for the device blurring and atmospheric amplitude modulation.

2. IMAGE PREPROCESSING

There are many factors that contribute to degrade the acquired image. For example, the device signal-to-noise ratio
(SNR) and the blurring due to the point spread function (PSF) of its optics, and the quantization artifacts due to
the analog-to-digital converters are produced by the image acquisition device. In addition, platform perturbations,
atmospheric modulations, and sampling artifacts also degrade the acquired image. Most researchers agree that
geometric and radiometric artifacts are the most common cause of image degradations in remotely sensed imagery.3
With reference to Figure 1 image restoration is an attempt to make the restored image g be geometrically and
radiometrically as “close” as possible to the radiant energy characteristics of the original scene s. The closeness
is measured in some metric space, such as the minimum mean square error (MSRE) space, and the goal of the
restoration process is to minimize the MSRE between the restored image and the original scene. Although, generally
termed an image enhancement technique, the MSR has proven to be an effective technique for correcting image



Figure 2. 2-d Mondrian.

degradations due to the optical blurring of the image acquisition device, illumination variations, and atmospheric
modulation. Thus, the MSR can be used to “restore” the acquired data, without any prior knowledge about the
atmospheric conditions at the time of acquisition.

2.1. The Multi-scale Retinex

For all (z,y) pixels in the multi-spectral image G, the multi-scale retinex (MSR)*% can be compactly written as

Fj(.’L’,y) = ZWn{log[G,(m,y)]—log[G,(m,y)*Hn(x,y)]}, j= 11"'7‘] (1)

n=1

where J represents the number of spectral bands, N is the number of spatial scales being used, and W,, are the
weighting factors for the scales.5® The H,(z,y) are the surround functions (convolution kernels) given by

Hy(z,y) = In eXp[—(.Z'2 + y2)/oi], (2)

where o, are the spatial scale parameters that control the extent of the surround function and the I,, are selected
so that Y > H,(z,y) = 1. Smaller values of ¢,, provide more dynamic range compression, and larger values provide
more lightness/color rendition. Each of the expressions within the summation represents a single-scale retinex (SSR).

The MSR combines the dynamic range compression of the small scale retinex with the tonal rendition of the
large scale retinex to produce an output which encompasses both. The MSR reduces dependency on lighting con-
ditions/geometry caused by such conditions as obscured foregrounds, and poor lighting caused by atmospheric
conditions or defects in artificial illuminants.

3. SCENE GENERATION

In order to exactly measure the effectiveness of MSR preprocessing on multi-image classification, we use simulated
images with exactly known ground truth. The simulated images are created by combining known atmospheric
transmittance profiles with scenes with known mean spatial detail and surface reflectance. We use a simple model®:!
of the radiance field which has the following characteristics:

1. The scene is a two-dimensional Mondrian flat surface divided into patches of uniform reflectance.

2. The effective irradiance (or the atmospheric transmittance) I(z,y) varies slowly and smoothly across the entire
scene, and

3. The reflected radiance field L(x,y) is everywhere independent of the viewer’s position.

These assumptions permit us to express the radiance field L(z,y) by the simple relationship

Liey) = —p@y)I(zy), 3)

™
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Figure 3. Scene generation system model.

where p(z,y) is the Lambertian surface reflectance. The target scene with reflectance p(z,y) is represented by the
two-dimensional (2-d) Mondrian illustrated in Figure 2. This scene consists of random polygons whose boundaries are
Poisson distributed and whose reflectances are distributed according to independent zero-mean Gaussian statistics.

The scene used in the simulation has 256 x 256 pixels. The reference spectra (See Section 3.1) were subsampled
at every 0.05um to produce ideal spectra of 42 points. This results in a multi-image with of 256 x 256 x 42 values.
Figure 3 illustrates the process by which the 42 band real multi-image is generated. The multi-image is generated
by assigning each spatial location in the Mondrian a number corresponding to a specific reference spectra that
corresponds to the identification number for a vegetation type.

The atmospheric transmittance function is simulated by significantly blurring a generated Mondrian image. In
addition to providing regions of different transmission characteristics, this also simulates the umbra and penumbra
profiles of shadows. Two instances of the atmospheric transmittance profile are shown in Figure 4: the dark regions
represent absorption in the atmosphere, or clouds; and the light regions represent transmittance, or absence of clouds.
The first profile, atrans1, has two moderately sized regions of low transmittance (< 30%) at the lower left and right
corners of the image. For the majority of the scene the transmittance is about 45%, with some higher transmittance
areas located at the bottom center portion of the image which have a transmittance of about 80%. The second
profile, atrans2, has on average a transmittance of about 65%. As shown in Figure 3, after the ideal scene image m
and atmospheric transmittance profile m' have been generated, the simulated multi-image g is obtained by doing a
pixel by pixel multiplication of m' and m,

g(z,y) = m(z,y) -m'(z,y)

Finally, the real image g is processed with the MSR algorithm to create the processed image f.

In order to analyze the data, fidelity metrics are computed for the ideal, real, and the MSR processed images.
Because we have “ground truth” data, these fidelity metrics can be applied and the results compared to the ground
truth. The fidelity analysis is based on two metrics that measure the accuracy and consistency of the results as they
are affected by the application of the two atmospheric transmittance profiles. A mean squared-error metric is used
to measure the similarity between the two original images, and the similarity between the two real retinex images
for each atmospheric transmittance profile. A sensitivity metric is used to measure classification consistency and
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accuracy for the real original and real MSR processed images using the real ground truth and the MSR ground truth
as the basis of comparison.

3.1. Agronomic Data

The reference spectra used to create the ideal Mondrian scene were taken from an AVIRIS (Airborne Visual and
Infrared Imaging Spectrometer) dataset for the San Luis Valley in Colorado.!® Reference spectra plots for 9
representative species of vegetation are used in the scene (Figure 5), of which 8 are used in this experiment. The
study used farmland reference spectra representing potatoes, alfalfa, barley, oat hay, canola, and open fields containing
chico.!® Based on the analysis provided by the USGS study by Clark et al,!® the alfalfa, canola, oat hay, and nugget
potato spectra showed the plants to be green and healthy. The barley had lost all of its chlorophyll signature. The
norkotah potatoes were not being irrigated as they were about to be harvested, and consequently showed weak
chlorophyll and cellulose absorptions, with soil (clay) absorptions from exposed soil. These potatoes were also being
sprayed with a defoliant, so they showed decreased chlorophyll absorption, and a shift of the red edge of the absorption
spectrum to shorter wavelengths. The chico and pasture spectra showed combinations of chlorophyll and cellulose
(dry vegetation) absorptions. There was rain in the valley in the few days before the data acquisition flight so the
chico and pasture did not show much water deprivation stress—being native plants they are hardy and can also
withstand more reduced precipitation compared to the crops. The bare field calibration spectrum is from a sample
measured on a laboratory spectrometer; all others are averages of several spectra extracted from the AVIRIS data.

3.2. MSR Preprocessing

Figures 6 and 7 show RGB and linear contrast stretched (LCS) composites of the real original and MSR processed
scene. In Figure 6(1), the original scene has a reflectance of at most 60, thus making it difficult to compare it to the
MSR, processed image of Figure 6(1). However, in the LCS versions of the images we are able to compare features in
both images. The most striking observation between the two images is that the MSR enhances details between class
borders and within the class regions so that the sharpness of features in the image distinguishes it over that of the
original image. We do note the appearance of edge artifacts within the borders of the regions for the MSR image.
These edge artifacts are caused by Mach band undershoots and overshoots displayed as dark boundaries around the
border of certain regions.!!

4. DISCUSSION

Figure 8 shows the real original and MSR images created with the two atmospheric transmittance profiles shown in
Figures 4a and 4b. The original images have been linearly stretched so that subtle differences between them and
the MSR image can be compared. Recall that atransl (Figure 4(1)) has an average transmittance of about 45%,
and atrans2 (Figure 4(r)) an average transmittance of 65%. Comparing the effects of the transmittance profiles on
the original and MSR images, it is evident that the MSR images appear visually consistent for both the models.
However, the original images show the effects of the transmittance models as various dark reflectance areas in the
images. For instance, the affect of the low transmittance areas is easily seen in the bottom left and right portion of
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Figure 5. Reference spectra of vegetation and soil types. (Source: USGS Speclab.1?)

Figure 6. real 2-d Mondrian scene: (1) original (r) linear contrast stretched version.

Figure 7. real 2-d Mondrian scene: (1) MSR processed (r) linear contrast stretched version.
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Figure 8. Effect of atmospheric models on original and MSR, processed images.

the original atransl image. Very bright areas of reflectance in the original atrans2 image are also discernible in areas
where the transmittance was the highest. In the MSR atransl image there is some slight darkening of reflectance
in the lower left corner of the processed image, however, overall the MSR images are more similar to each other
than are the unprocessed images. We also observe that the boundaries between regions in the MSR images are more
clear and are in greater detail than the original. The previously identified edge artifacts are, however, evident at the
transition between dark and bright areas in the processed images.

5. CLASSIFICATION

We used vector quantization (VQ) to perform unsupervised classification on the multi-spectral image. The only user
specified parameter is the number of classes K. For classification, a 9 band subset of features were chosen from the
original 42 band image.

To cluster the images we used VQ along with a splitting method to define the spectral signatures.!2 The splitting
algorithm used to generate the trained codebook, splits each training set codebook vector using the best perturbation
factor for that dataset. The preferred perturbation factor is the one that generates the smallest MSE for the input
training set. The algorithm is designed to produce cluster means for a specific codebook size. As is the case for most
classification methods, the performance depends on the quality of the set of spectral means used to discriminate
classes in the image. For this analysis, we did not focus on methods to obtain spectral means, but compared the
relative accuracy of the spectral means obtained by the VQ to signatures derived from the training areas

Because we have a ground truth map of our ideal classification, the training set will be selected from regions
in the image shown in Figure 2. The training set vectors were input into the splitting algorithm and the trained
codebook vectors were generated. In the testing stage, the images were classified with the trained codebook vectors,
using a MSE VQ clustering algorithm. The resulting test codebook vectors were used as candidate spectral means
to identify each vegetation species.
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Figure 9 shows the classification results for the original and MSR images for the two transmittance profiles. The
classification results for the MSR processed images are more consistent with each other than the results obtained
with the original images. However, there were problems separating certain class pairs such as pasture (c) and potato
(nh), and barley and bare field. The pasture (c) spectra is not identified in the atrans 2 model image for the original.
Both the original and the MSR processed atrans 1 images have classification errors resulting from the affect of the
low transmittance area in the lower left portion of the images.

Tables 1 and 2 show the classification sensitivity results for the original and MSR image for different ground
truth images. The original and MSR ground truth images refer to the images shown in Figure 10. The sensitivity
measurements are listed in terms of the percentage of pixels correctly classified and the actual number of pixels
correctly classified out of the total 65536 (256 x 256) pixels that belong to the classified image. As can be seen in
Table 1, the MSR processed image for the atransl transmittance profile provided better classification sensitivity.
When used with the real original ground truth image, the MSR produced sensitivity results slightly better, 2.5%,



than those produced by using the original atransl data. However original image for the atrans 1 model. However,
when the MSR processed original data was used for training, the classification accuracy for the MSR processed image
was substantially better, ~ 15%, than the original. An even greater separation in results is seen between the original
and MSR images for the atrans2 transmittance profile. When the MSR, processed data is used for training, the MSR,
classified image is approximately 23% better than the original classification. Even when the original unprocessed
data is used for training, the MSR classification is about 10% better.

Table 1. Sensitivity (# pixels out of 65536)

Ground Truth | Image Model 1
% correct | # pixels correct
Real Original | Original | 57.56 37722
Real Original | MSR 60.99 39970
Real MSR MSR 70.63 46288

Table 2. Sensitivity (# pixels out of 65536)

Ground Truth | Image Model 2
% correct | # pixels correct
Real Original | Original | 54.32 35599
Real Original | MSR 74.34 48719
Real MSR MSR 86.86 56924

Figure 11 shows an RGB composite of the quantized images. The original images have been linearly stretched so
that subtle differences between them and the MSR image can be compared. Comparing the effects of the atmospheric
models on the original and MSR images, we see that the MSR images appear visually consistent between both models
which is consistent with the results obtained using the 42 band multispectral image results discussed earlier in this
experiment. However, the effects of the transmittance models on the original images is more apparent in these
quantized images. The low transmittance areas are sharply contrasted with the high transmittance regions. In the
MSR atransl image we do observe the same darkening of reflectance in the lower left corner of the image which
corresponds to the same low transmittance in the atransl model in the same area. We observe the same edge
artifacts effects around the borders of regions in the MSR quantized images as seen in the 42 band MSR image. For
this experiment, the advantage of generating classification and quantized images simultaneously is that the classified
image may provide an indication of how closely the quantized image will match the original data.

In Figure 13 we illustrate the results of using the squared-error difference metric to compare the original and
MSR images for each atmospheric transmittance model. We conclude from the difference images that the consistency
observation between the MSR images for the difference transmittance models is again confirmed. These results are
similar to the results shown in Figure 12. However, we observe more high difference regions in Figure 13 for the
original image, than in Figure 12.

6. CONCLUSIONS

Although image enhancement is typically applied to improve the visual quality of multispectral images, in this ex-
periment we have given quantitative evidence that the application of the MSR algorithm restores images that are
degraded by atmospheric transmittance effects, and improves the results of multispectral image classification. Be-
cause the MSR algorithm was applied before clustering, the classification algorithm generated candidate spectra that
were better separated in reflectance for the MSR images than the spectra generated for the original images. Further-
more, the MSR candidate spectra maintained separability and high reflectance values regardless of the atmospheric
transmittance models applied. This leads us to conclude that the application of the MSR, algorithm produces (ap-
proximately) illuminant invariant spectral signature images. Except for class regions in which edge artifacts produced
incorrect classifications around region boundaries, the classification results and the difference measurement results
show a consistency between MSR images that is not evident in the classifications based on the original images.
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Figure 11. Effect of atmospheric models on VQ original and MSR images.
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Figure 12. Difference images for the (1) original and (r) MSR images.
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Figure 13. VQ Difference images for the (1) original and (r) MSR images.
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